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INSTABILITY OF A VIBRATIONAL FLUIDIZED BED 

Yu. A. Buevich, A. F. Ryzhkov, 
and N. M. Kharisova 

UDC 532. 546.6 

The causes of fine- and large-scale instabilities of a vibrational fluidized bed 
are discussed and simple models are constructed; the reasoning presented is con- 
firmed experimentally. 

With vertical vibration of finely dispersed loads the free surface of the vibrationally 
fluidized bed very often proves to be nonhorizontal and the distribution of material over 
a cross section of the apparatus is nonuniform. This has been noted repeatedly in reports 
on vibrational fluidization, starting with the earliest ones (see [1-5], for example), but 
clearly insufficient attention has been paid up to now to the analysis of the causes of the 
nonuniformity phenomenon. At the same time, with the transition to large-scale installations 
this nonuniformity grows, and under certain conditions part of the vibrating bottom can prove 
to be entirely uncovered, which leads to instability in the operation of the installation and 
sometimes to its getting out of order prematurely. 

Earlier the nonhorizontal nature of the free surface was connected with the vibrations 
not being vertical and with the amplitudes of vibrations of individual parts of the bottom 
being unequal [I, 2]. Special tests showed, however, that only loads of sufficiently large 
particles react to a change in the direction of the vibrational axis, but even for them the 
motion of the material is always directed toward the inclination of the axis in the lower part 
of the bed and in the opposite direction in the upper part, and it cannot be enlisted for 
an explanation of the observed nonuniformity. Loads of fine particles (~0.i mm in diameter) 
do not react at all to a small inclination of the vibrational axis, which agrees with the 
well-known data of [6] on vibrational transport and vibrational bunkering. 

It seems obvious that the bias of the free surface and the nonuniformity of vibrational 
fluidization are due to the ordinary "hydrodynamic" instability of the "average" (unperturbed) 
state of a vibrational fluidized bed, formed under the action of complicated fields of gas- 
dynamic and viscoelastic forces arising in the process of the separation of the bed from and 
its falling onto the bottom as a result of the combined action of the relative motion of the 
gas and of waves of elastoplastic deformation propagating through the material of the load. 
The initial instability relative to small perturbations in the shape of the free surface leads 
to the formation of relatively slow secondary gas flows and to motion of the particles en- 
trained by them, and this untimately causes the appearance of the observed nonuniformity. 
The decisive role of gas flows in the development of large-scale instability of a vibrationally 
fluidized bed is confirmed by the tests in [7], according to which the evacuation of the ap- 
paratus, the replacement of the closed bottomby a permeable porous one (which promotes a de- 
crease in the swelling of the bed), and a transition to larger particles (for which the spe- 
cific force of interaction with the gas is smaller than for fine ones) lead to leveling of the 
free surface and the disappearance of the nonuniformity. 

Investigation of the stability of the average state of a bed is hindered by the fact that 
a theory which would permit an analytical description of the characteristics of this state 
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itself in the general case has been absent until now. Relatively low beds at low relative 
vibrational accelerations, for which it proved possible to generalize Kroll's reasoning [I] 
and to construct a theory allowing for the expansion of the bed in the flight phase [8, 9], 
are the only exception. In the general case, therefore, it is necessary to resort to physical 
modeling of the system, using some experimentally established characteristics to describe 
its average state. 

It is natural to assume that a granular material allows a relative deformation only in 
the flight phase, during which it can be modeled in a first approximation as some homogeneous 
continuous medium, permeable to gas, and with an effective density d, a viscosity ~, and a 
coefficient of hydraulic resistance to gas flow ~. The motion of this medium, leading to 
the development of nonuniformities, is caused primarily by its interaction with secondary gas 
flows, whose appearance is due to perturbations in the gas pressure field. This field thus 
proves to be a basic characteristic of the state of a vibrationally fluidized bed. In the 
unperturbed state the pressure depends on the time t and the vertical coordinate z, as well 
as on the height h of the bed, the vibration frequency f, and the physical properties of the 
materials used, as on parameters. The latter quantity, its amplitude values, and the functions 
obtained through its time averaging have been measured and discussed repeatedly in the litera- 
ture (see [5, i0], for example). As follows from the foregoing, the function p(z) obtained 
by averaging the oscillating pressure only over the part of the vibrational cycle correspond- 
ing to the flight phase, when the granular material can be entrained by gas flows, is of in- 
terest. This function has been determined experimentally for beds of corundum particles in 
tests discussed in detail below. A concept of them, as of the pressure distribution in the 
phases of flight and contact in general, can be obtained from Fig. i, in which, besides a 
phase diagram for one such test, we present the corresponding dependences on h of the quan- 
tities 

v = - -  p (o) ,  ~ = - d p / d z l ~ = ~ ,  ( 1 )  

describing the average over the flight phase of the rarefaction below the bed and the aver- 
age gradient of the rarefaction in the zone near the surface. For relatively shallow beds 
these quantities vary in correlation with h, which indirectly indicates the sign-constancy 
of the function p(z); for deeper beds the quantity p becomes an alternating-sign function of 
z and possesses extrema. The function p(z) can presently be obtained analytically only for 
very shallow beds, discussed in [8, 9]. 

We note that the diagram and the curves in Fig. 1 reflect the quasiperiodic ("beaded") 
character of the variation in the structure of a vibrationally fluidized bed with an in- 
crease in its height, noted earlier in [5]. This fact, which is of considerable independent 
interest, is also confirmed by phase diagrams in the h, f plane, an example of which is pre- 
sented in Fig. 2. There is good agreement between the locations of the singular points on 
curves of the type shown in Fig. ib and the variations in the structure of a bed at a given 
frequency, about which one can judge by examining intersections of the diagram of Fig. 2 with 
lines of f = const. 

The characteristic time scale of the secondary flows is far longer than the vibration 
period, and therefore it is natural to perform averaging over a time interval which is con- 
siderably longer than this period but less than this time scale. The pulsations of param- 
eters of the bed with the vibration frequency thereby prove to be smoothed out, and in the 
unperturbed state of the bed both the gas and the particles can be treated as stationary on 
the average. 

First let us consider the evolution of small random perturbations in the shape of the 
free surface of the bed, z = h + 6, 6 <<h, in the x, z plane. These perturbations are ac- 
companied by the appearance of pressure disturbances p'(t, x, z) superimposed on the average 
pressure field p(z) and of secondary motion of the gas and the granular material with veloc- 
ities v(t, x, z) and w(t, x, z), with the inequality v >> w being valid because of the large 
difference between the densities of the gas and the particle material. For the same reason 
we can neglect inertial forces in the gas in comparison with the forces of hydrodynamic inter- 
action with the particles and, taking these forces as linear with respect to the relative 
velocity v -- w = v, we can describe the gas motion with the help of the ordinary Darcy equa- 
tion. Also using the equation of conservation of mass of an incompressible gas, we have 

v=--~-iVp', Vp'=O. (2) 
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Fig. i. Phase diagram (a) and dependences of the 
parameters 7 and 8 on h (b) for a bed of 0.08 mm 
corundum particles with a vibration amplitude of 
2.7 mm and a frequency of 20 Hz. Solid lines: lim- 
its of parts of the vibrational cycles correspond- 
ing to excess prew and to rarefaction below 
the bed (the rarefaction region is hatched); dashed 
lines (i and 2): phase angles of separation from 
and falling of the bed onto the bottom, respec- 
tively; dotted lines: phase angles corresponding 
to maximum (amplitude) values of pressure and rare- 
faction, Y, kPa; 8, kPa/m; h, m. 

In the formation of the boundary conditions we must use the equality of the total gas 
pressure above the bed to the atmospheric pressure (which it is convenient to take as the 
zero pressure reading) and the impermeability of the bottom to the gas (which corresponds to 
a closed bottom). Thus, with allowance for the smallness of ~ = ~(t, x), we obtain 

p ' t , ~ - - ~  - -  O, a/lazl~_o = o. (3 )  

The motion of the granular material, treated in the approximation of a homogeneous, New- 
tonian, continuous medium on which an external volumetric force ~(v- w) ~ ~v acts, is con- 
trolled by the ordinary Navier-Stokes equations 

aw= 
d -@wz = 0. d #W~ =--V ~ q-~Awq-~v, (4) 

Ox Oz at 

where  ~ i s  t h e  e f f e c t i v e  p r e s s u r e  in  t h i s  f i c t i t i o u s  c o n t i n u o u s  medium, c h a r a c t e r i z i n g  t h e  
i n t e r a c t i o n  be tween  t h e  moving  p a r t i c l e s .  I n t r o d u c i n g  t h e  s t r e a m  f u n c t i o n  ~ i n  t h e  s t a n d a r d  
way, from (4) we obtain the equation 

0 A~=vA%pq - ~ (0v, Ovz)___vA~ ' (5) 

with the latter equality in (5) following from the potential nature of the filtrational mo- 
tion of the gas. For ~ from (4) we obtain the equation 

a=az - d ~ ~ azaP ( 6 ) 
In the formation of the corresponding boundary conditions we need to use the impermea- 

bility of the bottom to the particles, the reduction of the normal and tangential stresses to 
zero at the free surface of the bed, and the reduction of the tangential stresses to zero at 
the lower surface of the bed (quite understandable physically if one remembers that we are only con- 
sidering the flight phase of thebed and one considers that thenormal stress at this surface is _ 
different from zero, generally speaking, as a result of the impact interactions of the granu- 
lar material with the bottom). In addition, there is a kinematic condition connecting the 
vertical component of the particle velocity at the free surface with the rate of change of 
the coordinate of this surface. Again, using the model of a homogeneous Newtonian medium, we 
obtain 

1164 



20 ! =~__c -- �9 ---, 

\i 

~ ~-K L ~ u__~__~ 
�9 -h :Z 

Fig. 2. Summary diagram of states of a vibrationally fluidized 
bed of 0.12 mm corundum particles; vibration amplitude 2.7 n%~: 
O) line of start of tossing (a); l) start of appreciable expan- 
sion (b) and fluidization (c); 2) start of swelling, appearance 
of bubbles (d), and of maximum value of phase angle of sep- 
aration (e); 3) maximum swelling (f) and minimum values of phase 
angle of separation (g); 4) maximum amplitude of pressure below 
the bed and maximum fountaining (h); 5) minimum swelling (i) 
and disappearance of bubbles (j); 6) minimum amplitude of pres- 
sure below the bed (k); 7) development of irregular tossing mode 
(1). f, Hz. 

wJ~=o = O, a ~ l a z , = h  = o, ( - -  z + ~ , / a z ) ~ = h  = o ,  aw~/azl~=o = o, w,l~=h = 06/0t. ( 7 )  

As usual, in an investigation of stability in the small it is sufficient to consider 
only the simplest wave of the perturbations, i.e., to take 

{p, v, w, n, r 6} = {P (z), V (z), W(z), H(z), r (z), A} e"st+~L (8) 

The e q u a t i o n s  a n d b o u n d a r y  c o n d i t i o n s  f o r  t h e  a m p l i t u d e s  i n  (8) a r e  e a s i l y  o b t a i n e d  f rom ( 2 ) ,  
( 3 ) ,  ( 5 ) - ( 7 ) ,  and t h e  d e f i n i t i o n  of  t h e  s t r e a m  f u n c t i o n .  In  p a r t i c u l a r ,  we have 

p = ~A Ch kz Vx = __ ik ~A ch kz Vz = __ k ~A sh kz 

chk--~' ~ chkh " ~z chkh (9) 

The g e n e r a l  s o l u t i o n  of  the  e q u a t i o n  f o r  ~ o b t a i n e d  from (5) has  the  form 

�9 = @re h~ -+- r - ~  § @~e xz + r -~z, ~,~ : k z + i~o)v, ( 1 0 )  

it being easy to obtain a system of five homogeneous, linear, algebraic equations for the con- 
stants in (i0) and for the quantity A from (6)-(9). The condition for the presence of a non- 
trivial solution of this system leads to the secular equation 

k 3 c t h ~ h - L  3c thkh= ~ k dv 2 ~, (11) 

which determines the frequency ~ of the perturbations in the form of a function of the wave 
number k and the parameters of the vibrational fluidized bed. States of the bed for which the 
imaginary part of ~ is negative will be unstable. The value of k yielding the maximum of this 
quantity characterizes the wavelength of the most rapidly growing perturbation. 

It is not hard to investigate Eq. (ii) numerically in the general case, but to obtain 
the main qualitative results it is sufficient to consider the very probable case when [m[ << 
~k 2. ~,lith the accuracy of terms of first order with respect to ]~01/~k 2 we obtain from (ii) 

dv kh (3cth kh q- kh sh -2 kh) (12) 

Thus, the initial perturbations evolve monotonically with time without oscillations ; 
they grow in the case when B < 0, i.e., when the rarefaction intensifies with greater dis- 
tance into the bed from the free surface, and they die out in the opposite case. When B < O 
the pressure at points below "depressions'! in the free surface is higher than the pressure 
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at points lying in the same horizontal plane but below "humps." As a result, cfrcu!ating 
gas flows develop in which gas penetrates into the bed through depressions and leaves it 
through humps.* Particles are entrained by these flows in the same direction, and this 
leads to deepening of the depressions and growth of the humps. If B > 0 then the flows are 
oppositely directed to those discussed and lead tO the filling in of depressions and the 
smoothing out Of initial humps. 

An instability of the investigated typeobviously is small-scale, involves oniy the sur- 
face section of a vibrational fluidized bed, and leads to the appearance of ripples at its 
surface, observed in [3], for example; the conditions for the realization of this instabil- 
ity are easily determined by examining the form of the p(z) curve and its dependence on the 
parameters of the bed. Thus, under the conditions of the experiment illustrated in Fig. 1 
ripples appear in shallow beds (h ~I0 cm), disappear with an increase in the height of the 
bed, and appear again at h ~ 25-30 cm. 

With the growth of the initial perturbations (or upon the development for some reason 
of perturbations which are not small from the very start) the linear theory presented ceases 
to be applicable. Physically this means, in particular, that not only the state of the sur- 
face zone of the bed but also the perturbed pressure distribution in its interior, which de- 
pends strongly both on the character of the accumulated perturbations and also on the de- 
tailed form of the entire unperturbed distribution p(z), starts to play a role in the genera- 
tion of the horizontal gas flows stimulating the development of secondary circulating flows. 
Although it is scarcely possible to construct a general theory for large-scale perturbations, 
a concept of the physical causes and the general trend of their evolution can be obtained 
from an examination of the simplest examples. 

As an example, let us consider the experiment shown in Fig. 3a. A vibrating load with 
an initial height ho is divided by a vertical barrier into two equal piles so that there is 
a narrow gap between its lower boundary and the vibrating bottom. Since the width of the gap 
is far less than ho (but greater than the vibration amplitude, of course), the distributions 
p(z) in the two sections of the apparatus are established almost independently, with the 
interaction between the piles being determined only by the amounts of rarefaction under them 
(i.e., by the respective values of y). If ho < h' then d~/dh > 0 (see Fig. ib) and a pertur- 
bation ~h in the heights of the piles (hl = ho -- ~h, h2 = ho + ~h) leads to the fact that the 
rarefaction under the higher pile (on the right in Fig. 3a) is greater than the rarefaction 
under the lower pile. As a result, a gas flow through the gap develops which is directed 
from the first section to the second during the flight phase. The average particle flow is 
also directional. Ultimately in the case Of 2ho < h(I) , where h(I) is the second root of the 
equation y(h) = O, following the root h = 0, all the particles will be transferred into the 
second section, as shown in the first part of Fig. 3a. If 2ho > h (I) then an equilibrium 
state is evidently established such that h2 > hl > 0 and ~(h~) = y(h~). In any case, the 
complete or partial vibrational bunkering of the finely dispersed granular material will thus 

occur.* 

Now let ho satisfy the inequalities h' < ho < h", so that dF/dh < 0. It is easy to see 
that in this case a perturbation ~h in the heights of the piles causes the development of a 
difference in the rarefactions under them, which stimulates the reverse transfer of parti- 
cles, equalizing the piles. In this height interval the state hl = h2 = ho is stable (see 
second part of Fig. 3a). In the interval of h" < ho < h"' thestate with piles of equal 
height again proves to be unstable: the directional transfer of granular material proceeds 
until the establishment of a final stable state for which y(hl) = ~(h2), as shown in the third 
part of Fig. 3a. The reasoning presented is easily extended to loads with higher values of 
ho also; on the whole, states corresponding to the ascending branches of the curve ~(h) are 
unstable while those corresponding to the descending branches are stable. It is also easy to 
analyze situations when the initial heights of the piles are different: depending on the loca- 

*We note that the development of a nonuniform field p(z) in a vibrational fluidized bed which 
is in a stationary state on the average represents an internal property of the bed; this field 
obviously does not lead to the development of directed vertical movement of the gas. 
*Actually, a thin "shelf" of material covering the gap always remains in the empty section. 
We also note that the presence of a slow transfer of particles from one section to the other 
hardly affects the establishment of the unperturbed pressure distributions p(z) in the two of 

them. 

1166 



, / "  ~ " :.'. ,-.: :..: ...!: ~:::.. 

Or2: 

0 

y 
i 

2 4 

'/i 

V 

Fig. 3 Fig. 4 

Fig. 3. Sketches (i, 2, 3) of states of a vibrational fluidized bed with an in- 
crease in the volume of the load: a) bed divided into two sections by a barrier; 
dashed lines: initial state; b) free bed; dashed lines: change in bed configura- 
tion upon the addition of a small portion of material. 

Fig. 4. Experimental dependences of heights of piles in neighboring sections of 
avibrationally fluidized bed of 0.12 mm corundum particles with a vibrational 
amplitude of 2.7 mm and a frequency of 15 Hz on the dimensionless total volume 
of the bed. The corresponding dependence y(h) is shown arbitrarily on the left. 

tion of the corresponding points on the curve of y(h), both the further vibrational bunker- 
ing with the establishment of a state in which the piles differ even more strongly in height 
and the complete or partial recuperation are possible. In principle, by analyzing the depen- 
dence of y on other parameters it is easy to investigate the conditions of the onset of vi- 
brational bunkering and recuperation as these parameters vary. 

The above reasoning is fully confirmed by tests set up on loads of fine corundum par- 
ticles of different diameters with different vibration frequencies and initial bed heights. 
The results of one such test are presented in Fig. 4 as an example: the dependences of hl 
and h2 on the arbitrary variable V, representing the dimensionless total volume of the load, 
are presented. The corresponding curve of T(h) is also shown arbitrarily in Fig. 4. The 
volume of the load was varied under the test conditions by adding material to the first sec- 
tion. The almost complete vibrational bunkering of the material is observed for shallow beds. 
With an increase in the volume of the load the levels of the piles are equalized, and this 
occurs just at those values of h which, with the accuracy of the experimental error, coin- 
cide with the value h' producing the first extremum of the function T(h). Then the heights 
of the two piles grow equally; this stable state just corresponds to the growing branch of 
y(h). (The small "underrecuperation" is evidently explained by the influence of wall fric- 
tional forces.) Finally, vibrational bunkering begins again in the region of the second ex- 
tremum of y(h). 

A variant of the described tests in which one of the sections is throttled or an excess 
pressure or rarefaction is artificially created in it is interesting. Tests of such a type 
with the submersion of a special "bucket" or pipe in a vibrationally fluidized bed are de- 
scribed in [ii, 12]. In this case the pressure above the pile in the indicated section dif- 
fers from atmospheric pressure and affects the absolute value of the pressure under the pile 
also, which shows up in the transfer of gas and granular material, of course. In contrast to 
the situation discussed above, when the evolution of the system was determined only by the 
gas pressure in the bed during the flight phase, here the pressure during the contact phase 
is also important. Actually, although the granular material is stationary during contact, 
the gas flow continues and affects the pressure established inthe throttled section. 

Now let us discuss the phenomena occurring in the case when the barrier is raised, i.e., 
the size of the gap is increased and even becomes comparable with the height of the bed. It 
is clear that the flows of gas and particles are distributed over the entire "free" boundary 
between the piles in the neighboring sections and the interaction between them is determined 
not only by the values of the pressures at z = 0 but generally by the distributions p(z) as a 
whole. In this case one can no longer assume that these distributions are independent and 
coincide with the distributions for isolated vibrationally fluidized beds of the correspond- 
ing heights. The limiting case is obviously reached when the barrier is removed (Fig. 3b). 
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If the bed is shallow enough that the distribution p(z) is close to monotonic (see [8- 
i0]), then the relationship between the pressures in the neighboring sections at different 
levels can be judged approximately from the relationship between the corresponding values of 
y. In this case all the reasoning presented above remains valid in a qualitative respect. 
In particular, if the average bed height in Fig. 3b is less than a value close to h' then any 
defect in the free surface will be intensified, withthe ultimate establishment of a stable 
state, shown in the first part of Fig. 3b: part of the apparatus is occupied by a ~lat bed 
of height ~h' while part of the apparatus is not loaded; the shape of the transitional zone 
is determined by the value of the dynamic angle of repose. Upon the addition of material 
a uniform distribution of granular material over the vibrating bottom becomes stable (second 
part of Fig. 3b). For deeper beds such a distribution again ceases to be stable, and from 
the above standpoints one would exect the establishment of the state shown in the third part 
of Fig. 3b. In reality, however, in a deep bed the distribution p(z) is essentially mono- 
tonic and so it cannot be judged only from the quantity ~ = p(O). In this case not only the 
amounts but also the directions of the transfers of gas and particles vary over the height 
of the bed, with the development of complicated circulation loops which also affect the dy- 
namic equilibrium. Therefore, the actual state of the bed will differ from the idealized 
state considered. We note that all the indicated states have been observed and discussed 
repeatedly [5]. 

NOTATION 

d, density of medium modeling the granular material; f, vibrational frequency; h, bed 
height; k, wave number of perturbations; p, pressure; p', P, perturbation of the field of 
gas pressur~ and its amplitude; t, time; v, V, velocity of gas filtration and its amplitude; 
w, W, velocity of granular material and its amplitude; x, z, horizontal and vertical coor- 
dinates; ~, coefficient of hydraulic resistance; B, y, rarefaction gradient near free sur- 
face of the bed and rarefaction below the bed, averaged over the flight phase; ~, A, pertur- 
bation of shape of the free surface and its amplitude; %, parameter introduced in (i0); ~, 
viscosity of medium modeling the granular material; ~ = ~/d; ~, ~, effective pressure inside 
the granular material and its amplitude; ~, ~, stream function of granular material and its 
amplitude; m, complex frequency of perturbations. 
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